About Header Image

Q: I haven’t seen much new with ACell. Have you been making progress with your research?

A: Thus far, we have not been able to multiply transplanted hairs with ACell, nor have been able minimize the width of the donor scars following FUT. At present, we are not recommending ACell to our patients, but are continuing to explore different ways of using it.

Visit the Hair Cloning News section to read about the latest research on cloning and multiplication
Read about Hair Cloning Methods

Posted by
NYT - New Stratagems in the Quest for HairFred R. Conrad/The New York Times

Dr. Bernstein is featured in Douglas Quenqua’s article in the New York Times — “New Stratagems in the Quest for Hair” — about the latest advances in hair restoration. The article mentions Dr. Bernstein’s pioneering research on hair cloning, including his studies on hair multiplication using the breakthrough biotechnology of ACell’s MatriStem® extracellular matrix.

On hair cloning:

Dr. Robert M. Bernstein, clinical professor of dermatology at Columbia University, is now one of several researchers experimenting with [ACell MatriStem].

“It’s just a question of time now” before hair cloning becomes a reality, Dr. Bernstein said. “We keep on moving back that time, but I think there’s absolutely no doubt that it’s going to be done.”

He believes hair cloning will be commercially available within 10 years. This may sound like a long time to wait, but “it’s important to remember that baldness is unlike other conditions where you can progress past the point of being helped,” Dr. Bernstein said. “Once we have a cure for hair loss, everyone will be able to benefit.”

On male pattern baldness:

“Hair has been an evolutionary sign of health and sexuality and youth, and that doesn’t change,” Dr. Bernstein said. “Shaved heads look cool, but not everyone wants one, and not everyone looks good with one.”

The article also discusses interest among hair restoration physicians in researching the use of the eyelash growth medication Latisse for hair regrowth on the scalp.

Go here to read the article at the NYT.

Posted by

Robert M. Bernstein, M.D., F.A.A.D., Renowned Hair Transplant Surgeon and Founder of Bernstein Medical – Center for Hair Restoration in New York, is Studying Four Applications of ACell MatriStem™ Extracellular Matrix in a Type of Hair Cloning, Called Hair Multiplication, as well as in Current Hair Restoration Procedures.

New York, NY (PRWEB) March 15, 2011 – Robert M. Bernstein, M.D., F.A.A.D., Clinical Professor of Dermatology at Columbia University in New York and founder of Bernstein Medical – Center for Hair Restoration, has been granted approval by the Western Institutional Review Board (WIRB) to study four different applications of the ACell MatriStem extracellular matrix (ECM) in hair restoration.

Hair Cloning with ACell MatriStemHair Cloningwith ACell MatriStem

Two of the studies include its use in a type of hair cloning, called hair multiplication, where plucked hairs and transected follicular units are induced to generate new hair-producing follicles. The other two areas of study include evaluating the use of the ECM in current hair transplant procedures to enhance hair growth and facilitate wound healing.

Approval by the WIRB allows the researchers to conduct double-blinded, bilateral controlled studies. Controlled studies are the best way to increase the objectivity of the research and insure the validity of the results.

“The medical research we are performing is important because it may lead to hair multiplication as a way to increase a person’s supply of donor hair. In this way, patients would no longer be limited in the amount of hair which can be used in a hair restoration procedure,” said Dr. Bernstein. “Additionally, in the near-term, the extracellular matrix may be able to improve the cosmetic benefit of current hair transplant procedures. We are simultaneously pushing the boundaries of hair cloning methods and follicular unit transplantation.”

Hair multiplication, a variation of what is popularly known as hair cloning, is a procedure where partial hair follicles are stimulated to form whole follicles. These parts can either be from hairs derived from plucking or from follicles which have been purposely cut into sections. Generally, damaged follicular units will stop growing hairs. However, there is anecdotal evidence that an extracellular matrix applied to partial follicles may stimulate whole follicles to grow and, when applied to wounds, may stimulate the body’s cells to heal the damaged tissue.

This new medical research also attempts to show that ACell can improve the healing of wounds created when follicular units are harvested for hair transplant surgery. Currently, in follicular unit hair transplant procedures, a linear scar results when a surgeon incises the patient’s scalp to harvest follicular units. Occasionally, this scar can be stretched, resulting in a less-than favorable cosmetic result. If ECM can induce the wound to heal more completely, the linear scar may be improved. The extracellular matrix may also benefit general hair growth in hair transplantation in that the sites where hair is transplanted, called recipient sites, can be primed with ECM to encourage healthy growth of the hair follicle.

Dr. Bernstein is known world-wide for pioneering the hair restoration procedures of follicular unit transplantation (FUT) and follicular unit extraction (FUE). Follicular units are the naturally-occurring groups of one to four hair follicles which make up scalp hair. These tiny structures are the components which are transplanted in follicular unit hair transplants.

While hair cloning has been of great interest to hair restoration physicians and sufferers of common genetic hair loss, the method by which this can be achieved has yet to be determined. The use of ACell’s extracellular matrix to generate follicles is a promising development in achieving this elusive goal. In addition to the longer term implications of using ECM in hair multiplication, its impact on hair restoration will be more immediate if it can be proven effective when used in current FUT procedures.

About Dr. Robert M. Bernstein:

Dr. Bernstein is a certified dermatologist and pioneer in the field of hair transplant surgery. His landmark medical publications have revolutionized hair transplantation and provide the foundation for techniques used by hair transplant surgeons across five continents. He is respected for his honest and ethical assessment of a patient’s treatment options, exceptional surgical skills, and keen aesthetic sense in hair transplantation. In addition to his many medical publications, Dr. Bernstein has appeared as a hair loss or hair transplantation expert on The Oprah Winfrey Show, The Dr. Oz Show, Good Morning America, The Today Show, The Discovery Channel, CBS News, Fox News, and National Public Radio; and he has been interviewed for articles in GQ Magazine, Men’s Health, Vogue, the New York Times, and others.

About Bernstein Medical – Center for Hair Restoration:

Bernstein Medical – Center for Hair Restoration is a state-of-the-art hair restoration facility and international referral center, located in midtown Manhattan, New York City. The center is dedicated to the diagnosis and treatment of hair loss in men and women. Hair transplant surgery, hair repair surgery, and eyebrow transplant surgery are performed using the follicular unit transplant (FUT) and follicular unit extraction (FUE) surgical hair restoration techniques.

Contact Bernstein Medical – Center for Hair Restoration:

If you are a journalist and would like to discuss this press release, please email us or call us today (212-826-2400) to schedule an appointment to speak with Dr. Bernstein.

View the press release at PRWeb.

Posted by

Q: Like many people who are eagerly awaiting hair cloning, I read about ACell’s new technology, but what is an “extracellular matrix”? — S.B., Chicago, IL

A: An extracellular matrix, or ECM, is the substance between the cells in all animal tissues. It provides support to the cells and a number of other important functions. ECM is made up of fibrous proteins that form a web or mesh filled with a substance called glycosaminoglycans (GAG). One type of GAG, called hyaluronic acid, functions to hold water in the tissues. Another important part of the extracellular matrix is the basement membrane on which the epithelial cells of the skin and other tissues lie. Elastin in the ECM allows blood vessels, skin, and other tissues to stretch.

ECM has many functions including providing support for cells, regulating intercellular communication, and providing growth factors for wound healing and tissue regeneration.

Read more about ACell’s MatriStem ECM on our ACell for Hair Cloning page.

Posted by

ACell, Inc. - Regenerative Medicine TechnologyNew developments in regenerative medicine, presented at the 18th Annual Scientific Meeting of the International Society for Hair Restoration (ISHRS) this past week, may have opened the possibility that a patient’s hair can be multiplied in his own scalp.

ACell, Inc., a company based in Columbia, Maryland, has developed and refined an Extracellular Matrix (ECM), a natural biological material that can be implanted at the site of an injury or damaged tissue in order to stimulate a unique healing response. The ECM stimulates the body’s own cells to form new tissue specific to that site (a process referred to as “Auto-cloning”).

The ACell MatriStem devices have had some preliminary success in allowing plucked hairs that were placed into recipient sites on the patient’s scalp to grow. Although this is a major breakthrough, significant work remains in order for hair multiplication to become a practical treatment for hair loss in men and women.

It is also anticipated that the regenerative properties of Extracellular Matrix will facilitate the healing of the incision in the donor area after a hair transplant. We are currently offering ACell to all patients undergoing follicular unit transplant procedures at no additional charge.

We are currently studying the use of ACell for scalp hair multiplication as well as the facilitation of wound healing in follicular unit transplantation procedures. We are also treating select patients outside the studies. If you are interested in participating, please give us a call.

Posted by

Q: What are the possible obstacles that you see with hair cloning using the plucking technique? — D.E., Boston, MA

A: Plucked hair does not contain that much epithelial tissue, so we do not yet know what the success of the procedure will be. Plucked hairs will most likely grow into individual hair follicles that are not follicular units and therefore, will not have completely the natural (full) look of two and three hair grafts. This limitation may be circumvented, however, by placing several hairs in one recipient site. It is possible that the sebaceous gland may not fully develop, so the cloned hair may not have the full luster of a transplanted hair.

The most important concern is that, since the follicle is made, in part, by recipient cells that may be androgen sensitive, the plucked hair derived follicles may not be permanent. It is possible, that since all the components of a normal hair may not be present, the cloned hair may only survive for one hair cycle.

Since the ACell extracellular matrix is derived from porcine (pig) tissue, the procedure may not be appropriate if you are Kosher or allergic to pork. Of course, we do not know what other obstacles may arise since this technique is so new –- or even if the ones mentioned above will really be obstacles at all -– only time will tell.

Follow the latest in Hair Cloning Research

Posted by

Q: I heard that there have been some new advances in hair cloning and that it may be available sooner than we thought. I was planning on doing a hair transplant soon. Considering that hair cloning may be available at some point in the future, should I do FUE or FUT, or wait for cloning? — K.R., Fort Lee, NJ

A: Although there has been a major development in hair cloning with the use of ACell, an extracellular matrix to simulate hair growth, the model, at this point, is still in its earliest stages of development. It is hard to know when the technology will reach a state where it can be useful in hair restoration.

With respect to which you should do FUE or FUT if, theoretically, cloning is around the corner, the answer would be FUT, since FUT will give you the fuller look.

If the goal is to eliminate any trace of the traditional hair transplant, again FUT will most likely be the best choice, since the single linear scar would be easy to camouflage with cloned hair. With FUE, this would be much more difficult, since there are literally thousands of tiny scars. However, neither FUE nor FUT will preclude a patient from fully benefiting from cloning if, and when, it becomes available.

Read more:

Hair Cloning

Pros & Cons of FUE

Posted by

Q: I’ve read about some recent advances in hair cloning techniques with ACell. How does this work? — C.A., Stamford, CT

A: We, and several other groups, are engaged in studies using ACell MatriStem, a porcine extracellular matrix (ECM), to induce hair follicles to multiply in the patient’s own scalp (in vivo). This process differs from what people normally think of when speaking about cloning, namely producing populations of genetically identical cells, organs, or even individuals, in a test tube (in vitro).

In the current studies, a part of a hair follicle is implanted into the scalp in an extracellular matrix (ACell MatriStem), with the goal of inducing a complete follicle to form.

The concept is that if a small enough part of the donor follicle is removed, it will completely regenerate. Then, ACell MatriStem will induce the new hair fragment, implanted into the recipient site on the top of the scalp, to produce a new follicle –- thus we get two hairs from one. In one model being tested, hair is literally plucked from the scalp carrying with it enough genetic tissue to grow a new hair.

For more information, view our ACell page in the Hair Cloning section.

Posted by



Browse Hair Restoration Answers by topic:








212-826-2400
Scroll to Top