About Header Image

Q: I read, with considerable interest, your excellent article on the latest in Dr. Angela Christiano’s work on follicular neogenesis. It seems to me that the next questions we should be asking are: when will testing begin on human subjects and when might her research develop into a hair cloning treatment that is available to the general public?

A: It is very difficult to determine when this phase of the research might begin and it is even harder to predict when treatment might become available. First, the technology is not quite there. Dr. Christiano showed in her recent paper that changing the environment of skin (fibroblast) cells so that they could form into 3-D cultures enabled them to induce human hair-follicle growth. Although this was a major step towards cloning hair, additional work needs to be done before we will be able to mass produce fully-functioning human hair follicles to the extent needed for hair transplantation.

In addition, research on human subjects requires that experiments meet rigorous federal regulatory standards and these take time to be approved and carried out. Supposing that further study of follicle neogenesis results in a breakthrough treatment for hair loss, this treatment would still require meeting substantial efficacy and safety requirements of the FDA before it would be made available to the public. We will be communicating important developments as they occur through our Hair Cloning Research section and through periodic updates in the Bernstein Medical Newsletter.

Posted by

Q: What is the major obstacle to hair cloning?

A: Although many problems remain, the main one is to keep cloned cells differentiated (the ability to perform a specialized function, like producing a hair). There are certain cells in the skin, called fibroblasts, which reside around the base of the hair follicle. These cells are readily multiplied in a Petri dish. When these cells are injected into the skin, they have the ability to induce a hair to form (they are differentiated). The problem is that when these cells are multiplied in culture, they tend to lose this ability (they become undifferentiated).

A number of methods are being examined to keep these cells differentiated. Among them is the insertion of new genes into the cell’s nucleus to alter the expression of the existing genes. Another method is to change the spatial relationship of multiplying cells. The idea behind the second technique is that all embryonic cells have the same basic genetic material, but grow to have different functions (i.e., grow to form muscle, bone or nerves). One reason is that that the cells have a different physical relationship to one another and thus send different signals to each other based on this relationship. For example, the cells on the outside of a growing ball of cells may act differently than the cells on the inside, etc. If researchers can influence the way cells orient themselves as they multiply in the lab, this may enable them to become differentiated to produce hair and stay that way as the multiplication process continues.

For more on this intriguing topic, see the Hair Cloning and Hair Cloning Methods pages at the Bernstein Medical – Center for Hair Restoration website.

Posted by

Q: Considering cell cultivation is made possible how could their injection create a normal formation of hair on the scalp and can they induce hair growth also in scarred areas where previously hair stopped growing?

A: That is the question. It is not known if these induced follicles will resemble normal hairs, and be cosmetically acceptable on their own, or if they will grow unruly and must be used as a filler behind more aesthetically pleasing transplanted hair.

Hair growth is an interaction between the dermal components (fibroblasts in the dermal sheath and dermal papillae) and the epidermal structures.

It is possible that the injected dermal fibroblasts will interact with resident epithelial cells to produce a properly oriented hair. A tunnel of epithelial cells can also be created to facilitate this process and some researchers are using cultures of both dermal and epithelial cells.

As you suggest, part of the challenge is not just to multiply the hair but to find a way for the hair to grow in its proper orientation. With scar tissue, the task will obviously be much more difficult.

Another issue is that the induced follicles are just that, they are single hair follicles rather than complete follicular units. Because of this they wouldn’t have the cosmetic elegance of one’s own natural hair, unlike that which is possible in follicular unit hair transplantation.

That said, much work still needs to be done and it is not clear at this time what might be the solution.

Read more on the Hair Cloning page on the Bernstein Medical – Center for Hair Restoration website.

Posted by

Dr. Bernstein summarizes an article on hair cloning in The Plain Dealer:

An English based company called Intercytex has claimed some success in its research on hair cloning with its first testing in humans. This technique is similar to the one initially proposed by Dr. Colin Jahoda and published in 1999. (Download the article )

The idea is that certain cells (called fibroblasts) found at the bottom of hair follicles can be separated from the follicles after they have been removed from the scalp, and then be used to form new follicles.

The way this works is as follows: a few hair follicles at the permanent area from the back of the scalp (the area that does not bald) are removed. In a lab, the germinative cells at the base of the follicle are dissected off and placed in a Petri dish. They are then incubated in a special medium and allowed to multiply thousands of times.

These cultured cells are then injected into the balding area of the scalp where they induce complete hair follicles to form. In contrast to traditional hair transplants, where the doctor is limited by the patient’s finite donor supply and hair is literally just moved around (from the back to the front), in hair cloning, there will be an actual increase in the total number of hairs on a person’s head.

Initial testing involved seven male volunteers that were suffering from androgenetic alopecia (common baldness). After the process, five of them showed an increased amount of hair. Fortunately, there were no complications, such as skin inflammation or tissue rejection. However, the test area was small and volunteers only grew a little hair.

Towards the middle of next year, additional patients will be tested using a greater number of cloned cells, so that a larger area of the scalp could be covered. The researchers speculate that this new cloning technology may be on the market in as soon as five years.

The researchers speculate that in the distant future, traditional hair transplants may not be needed at all. Instead, as patients start to thin, they could come to the clinic on a regular basis for injections of their own cells to stimulate the growth of new follicles and stop the impending balding – a sort of hair maintenance.

Reference: The Plain Dealer, Tuesday, November 15, 2005. “Hope grows for bald baby boomers,” Malcolm Ritter, Associated Press.

Posted by

Q: I have heard that Dr. Jahoda was able to clone hair. Is that true? — M.T., Cincinnati, OH

A: Possibly the most interesting work related to cloning hair was done by Colon Jahoda in England over a decade ago. Dr. Jahoda’s work is significant because he identified an inducer cell — i.e. fibroblasts in the outer portion of the hair follicle (the outer root sheath) — that can stimulate the skin to produce new hair. It is well known that fibroblasts, unlike many other tissue cells, are relatively easy to culture.

Theoretically, a patient’s fibroblasts could be removed from the sheaths of just a few follicles and then cultured to produce thousands of follicles. These fibroblasts could then be injected back into the scalp to induce thousands of new hair follicles to grow.

In the study, fibroblasts from a man were injected into the forearm of genetically unrelated women. The cross-gender aspect of his experiment has received much publicity and is potentially of great importance to burn victims, but has little relevance to hair transplantation for male pattern baldness. Patients would probably benefit most from using their own cultured fibroblasts for the best match.

So far this important single study has not been reproduced.

Read about the latest in Hair Cloning Research

Posted by



Browse Hair Restoration Answers by topic:








212-826-2400
Scroll to Top

Learn more about hair restoration

Hair loss has a variety of causes. Diagnosis and treatment is best determined by a board-certified dermatologist. We offer both in-person and online photo consults.

Provide your email to learn more.