About Header Image

We have previously discussed Dr. Angela Christiano‘s work on hair loss genetics with her team at Columbia University in New York. A review of the 16th annual meeting of the European Hair Research Society; held recently in Barcelona, Spain; brings to our attention new research being conducted by a very astute scientist, Dr. Claire Higgins, who works at Dr. Christiano’s laboratory.

With tissue supplied by Bernstein Medical, Dr. Higgins is studying the inductive properties of the dermal papilla (DP), a group of cells that forms the structure directly below each hair follicle. As outlined in our Hair Cloning Methods page, the dermal papilla is of great interest to hair restoration physicians. Ideally, research of this kind will lead to a breakthrough in hair cloning or hair multiplication which will allow physicians to effectively “cure” hair loss by developing a limitless supply of donor hair that can be used in hair restoration procedures.

A description of Dr. Higgins’ work is provided by the Hair Transplant Forum International:

“After isolating [dermal papilla] from human hair follicles, they grow the human DP cells in spheroid cultures in order to retain their inductive potential. Then they place the dermal papilla spheres between the epidermis and dermis of neonatal foreskin and graft it onto the back of mice. Human [hair follicle] neogenesis can be observed after 6 weeks.”

In essence, the scientists were able to capitalize on the potential of dermal papilla cells to induce the growth of a hair follicle by enclosing the DP cells in a small sphere. When implanted, the DP cells maintained their properties of inducing the development of follicles, and, indeed, follicles did grow.

It is another example of how far our understanding of the biology of hair has come in the last 10 years. And it is another example of scientists closing in on the elusive “hair loss cure.”

Read up on the latest Hair Cloning Research

Posted by

RepliCel Life Sciences; a company out of Vancouver, Canada; is studying the use of hair cloning techniques to treat male pattern baldness and hair loss in women.

The study is in progress, but analysis of the 6-month interim results of the first phases has been published. The preliminary results at 6 months show that almost two-thirds of subjects (10 out of 16, or 63%) received a greater than 5% increase in hair density at the injection site. Of that group of 10 subjects, seven of them saw hair density improve by more than 10%. In one subject vellus hair density increased 24.9%, terminal hair density increased 14.5%, overall hair density increased by 19.2%, and cumulative thickness per area increased by 15.4%. There were no significant adverse safety events reported in the first 6 months of the trial.

Phase I/IIa of the RepliCel study involved injecting male and female subjects with their own (autologous) dermal sheath cup cells (DSCC), which were replicated or cloned using RepliCel’s laboratory technology. A preliminary analysis of the safety of the injections, as well as a preliminary analysis of the efficacy of the treatment in growing hair, was announced in May 2012 and presented to the European Hair Research Society in June 2012. Subjects in this part of the study will continue to be monitored for any adverse physical reactions and to assess hair growth at 12 months and 24 months after treatment.

Phase IIb of the study is designed to help the RepliCel researchers formulate the optimal treatment for hair growth. Some of the treatment regimens that will be tested include the use of different concentrations of cells and different treatment schedules, plus the effects of single injections versus repeat injections. The final protocols for Phase IIb are currently being worked out, with the clinical trial expected to begin in late 2012.

Reference:

Lortkipanidze, N. Safety and Efficacy Study of Human Autologous Hair Follicle Cells to Treat Androgenetic Alopecia. In Clinicaltrials.gov. Retrieved July 26, 2012, from http://clinicaltrials.gov/ct2/show/NCT01286649.

Posted by

Q: I haven’t seen much new with ACell. Have you been making progress with your research?

A: Thus far, we have not been able to multiply transplanted hairs with ACell, nor have been able minimize the width of the donor scars following FUT. At present, we are not recommending ACell to our patients, but are continuing to explore different ways of using it.

Visit the Hair Cloning News section to read about the latest research on cloning and multiplication
Read about Hair Cloning Methods

Posted by

Robert M. Bernstein, M.D., F.A.A.D., Renowned Hair Transplant Surgeon and Founder of Bernstein Medical – Center for Hair Restoration in New York, is Studying Four Applications of ACell MatriStem™ Extracellular Matrix in a Type of Hair Cloning, Called Hair Multiplication, as well as in Current Hair Restoration Procedures.

New York, NY (PRWEB) March 15, 2011 – Robert M. Bernstein, M.D., F.A.A.D., Clinical Professor of Dermatology at Columbia University in New York and founder of Bernstein Medical – Center for Hair Restoration, has been granted approval by the Western Institutional Review Board (WIRB) to study four different applications of the ACell MatriStem extracellular matrix (ECM) in hair restoration.

Hair Cloning with ACell MatriStemHair Cloningwith ACell MatriStem

Two of the studies include its use in a type of hair cloning, called hair multiplication, where plucked hairs and transected follicular units are induced to generate new hair-producing follicles. The other two areas of study include evaluating the use of the ECM in current hair transplant procedures to enhance hair growth and facilitate wound healing.

Approval by the WIRB allows the researchers to conduct double-blinded, bilateral controlled studies. Controlled studies are the best way to increase the objectivity of the research and insure the validity of the results.

“The medical research we are performing is important because it may lead to hair multiplication as a way to increase a person’s supply of donor hair. In this way, patients would no longer be limited in the amount of hair which can be used in a hair restoration procedure,” said Dr. Bernstein. “Additionally, in the near-term, the extracellular matrix may be able to improve the cosmetic benefit of current hair transplant procedures. We are simultaneously pushing the boundaries of hair cloning methods and follicular unit transplantation.”

Hair multiplication, a variation of what is popularly known as hair cloning, is a procedure where partial hair follicles are stimulated to form whole follicles. These parts can either be from hairs derived from plucking or from follicles which have been purposely cut into sections. Generally, damaged follicular units will stop growing hairs. However, there is anecdotal evidence that an extracellular matrix applied to partial follicles may stimulate whole follicles to grow and, when applied to wounds, may stimulate the body’s cells to heal the damaged tissue.

This new medical research also attempts to show that ACell can improve the healing of wounds created when follicular units are harvested for hair transplant surgery. Currently, in follicular unit hair transplant procedures, a linear scar results when a surgeon incises the patient’s scalp to harvest follicular units. Occasionally, this scar can be stretched, resulting in a less-than favorable cosmetic result. If ECM can induce the wound to heal more completely, the linear scar may be improved. The extracellular matrix may also benefit general hair growth in hair transplantation in that the sites where hair is transplanted, called recipient sites, can be primed with ECM to encourage healthy growth of the hair follicle.

Dr. Bernstein is known world-wide for pioneering the hair restoration procedures of follicular unit transplantation (FUT) and follicular unit extraction (FUE). Follicular units are the naturally-occurring groups of one to four hair follicles which make up scalp hair. These tiny structures are the components which are transplanted in follicular unit hair transplants.

While hair cloning has been of great interest to hair restoration physicians and sufferers of common genetic hair loss, the method by which this can be achieved has yet to be determined. The use of ACell’s extracellular matrix to generate follicles is a promising development in achieving this elusive goal. In addition to the longer term implications of using ECM in hair multiplication, its impact on hair restoration will be more immediate if it can be proven effective when used in current FUT procedures.

About Dr. Robert M. Bernstein:

Dr. Bernstein is a certified dermatologist and pioneer in the field of hair transplant surgery. His landmark medical publications have revolutionized hair transplantation and provide the foundation for techniques used by hair transplant surgeons across five continents. He is respected for his honest and ethical assessment of a patient’s treatment options, exceptional surgical skills, and keen aesthetic sense in hair transplantation. In addition to his many medical publications, Dr. Bernstein has appeared as a hair loss or hair transplantation expert on The Oprah Winfrey Show, The Dr. Oz Show, Good Morning America, The Today Show, The Discovery Channel, CBS News, Fox News, and National Public Radio; and he has been interviewed for articles in GQ Magazine, Men’s Health, Vogue, the New York Times, and others.

About Bernstein Medical – Center for Hair Restoration:

Bernstein Medical – Center for Hair Restoration is a state-of-the-art hair restoration facility and international referral center, located in midtown Manhattan, New York City. The center is dedicated to the diagnosis and treatment of hair loss in men and women. Hair transplant surgery, hair repair surgery, and eyebrow transplant surgery are performed using the follicular unit transplant (FUT) and follicular unit extraction (FUE) surgical hair restoration techniques.

Contact Bernstein Medical – Center for Hair Restoration:

If you are a journalist and would like to discuss this press release, please email us or call us today (212-826-2400) to schedule an appointment to speak with Dr. Bernstein.

View the press release at PRWeb.

Posted by

Q: What are the possible obstacles that you see with hair cloning using the plucking technique? — D.E., Boston, MA

A: Plucked hair does not contain that much epithelial tissue, so we do not yet know what the success of the procedure will be. Plucked hairs will most likely grow into individual hair follicles that are not follicular units and therefore, will not have completely the natural (full) look of two and three hair grafts. This limitation may be circumvented, however, by placing several hairs in one recipient site. It is possible that the sebaceous gland may not fully develop, so the cloned hair may not have the full luster of a transplanted hair.

The most important concern is that, since the follicle is made, in part, by recipient cells that may be androgen sensitive, the plucked hair derived follicles may not be permanent. It is possible, that since all the components of a normal hair may not be present, the cloned hair may only survive for one hair cycle.

Since the ACell extracellular matrix is derived from porcine (pig) tissue, the procedure may not be appropriate if you are Kosher or allergic to pork. Of course, we do not know what other obstacles may arise since this technique is so new –- or even if the ones mentioned above will really be obstacles at all -– only time will tell.

Follow the latest in Hair Cloning Research

Posted by

ACell, Inc. - Regenerative Medicine TechnologyHair cloning is one of the most hotly discussed topics in the field of hair transplantation today. “When will hair cloning become available?” and “How will it work?” are among the most frequently asked questions about treating hair loss that we receive at Bernstein Medical – Center for Hair Restoration.

New developments in regenerative medicine technology, presented at the 18th Annual Scientific Meeting of the International Society for Hair Restoration (ISHRS), may have opened the door to commercialization and medical use of new techniques which could provide an answer to both questions.

ACell, Inc., a company based in Columbia, Maryland, has developed and refined what they consider, “the next generation of regenerative medicine.”

For more information on this exciting development, view our page on ACell technology and hair cloning

Follow news and updates on our Hair Cloning News page.

Posted by

Q: I just read a press release saying that researchers have developed a successful technique to clone hair by using a wound healing powder. To paraphrase, the press release says:

MatriStem MicroMatrix, a product of regenerative medicine, ACell, Inc., is a wound healing powder that promotes healing and tissue growth and has now proven to help regenerate hair in the donor and recipient regions of hair transplant patients. While intended to heal ulcers and burns, Gary Hitzig, M.D. and Jerry Cooley, M.D., have found that its properties offer a broader scope of treatment, including hair cloning. “We’ve made amazing breakthroughs using MatriStem as a hair cloning tool,” said Dr. Hitzig. “We’ve been able to multiply the number of hair follicles growing in the recipient area, and as an added benefit are seeing faster hair growth. This new hair cloning technique also makes hair transplantation surgery less invasive.”

Is this new technique really a breakthrough in hair cloning? And if so, when can we start cloning hair?

A: It appears from preliminary studies that plucked hairs stimulated by ACell are in some cases able to regenerate new hair. Because the hair is placed into the recipient area and is partially derived from cells in the dermis, it is not yet clear whether the hair will be effected by androgens over time or if it will continue to bald.

The research so far is promising and a number of doctors are doing research in this area, including Dr. Schweiger and myself at Bernstein Medical – Center for Hair Restoration.

For more on the topic, visit our Hair Cloning section, our page on ACell extracellular matrix devices, and answers to questions on Hair Cloning.

Posted by



Browse Hair Restoration Answers by topic:








212-826-2400
Scroll to Top