About Header Image

Q: Is it safe to implant 6,000 grafts in 2 days with an FUE procedure? — L.P. ~ Port Washington, N.Y.

A: A 6,000-graft procedure would be a very large hair transplant. Transplanting this many grafts at once would necessitate grafts being placed very close together. In this situation, the blood supply may not be adequate to support the growth of the newly transplanted grafts.

Another reason for concern is that when harvesting, FUE yields about 20 grafts/cm2. A 6,000-graft procedure would require 300 cm2. Since the donor area is about 30 cm long, this would require a donor height of 10 cm, clearly extending beyond the permanent zone of the scalp of most patients.

Posted by
Dr. Bernstein presenting at the ISHRS 26th Annual World CongressDr. Bernstein presenting at the ISHRS 26th Annual World Congress.

Robert M. Bernstein MD, FAAD and Christine M. Shaver MD, FAAD of Bernstein Medical attended the 26th World Congress of the International Society of Hair Restoration Surgeons (ISHRS). At the congress, Dr. Bernstein introduced the newest robotic technology in the field of hair transplantation, the ARTAS iX, to an audience of over 550 hair restoration physicians.

Dr. Bernstein Introduces the ARTAS iX

Dr. Bernstein explains that the ARTAS iX now automates the implantation step of a hair transplant procedure by utilizing totally new hardware and software algorithms. The newly designed operating chair provides more flexibility for the surgeon and more comfort for the patient. This ARTAS iX also improves the accuracy and efficiency of the robotic FUE procedure.
With implantation, three of the four aspects of a hair transplant (excision, site creation, implantation) have now been successfully automated. Only graft extraction is left as the remaining step.

How Implantation Works

While performing an FUE procedure with the ARTAS iX, harvested grafts are loaded — 25 at a time – into rectangular cartridges. These cartridges are then inserted into the arm of the robot that implants the grafts directly into the scalp. A major advantage of using cartridges, rather than the manual technique, is more delicate handling of the grafts with less risk of graft injury. When grafts are implanted manually, they are typically grasped by the bulb, or just below the sebaceous glands, and then brought into the incision risking considerable damage in the process. With ARTAS iX, grafts are held at the epidermal end and then gently placed into the cartridge. This technique eliminates unnecessary injury to the growth of the transplanted hair by avoiding the lower and mid-portions of the follicles.

With the use of the ARTAS iX, the physician digitally creates a recipient site plan that communicates directly with the robot. The doctor programs the specific size, distribution, density, direction, and angle of the sites for the follicular unit grafts. The ARTAS iX’s vision system identifies where the grafts are to be placed, using the fiducials on the scalp as guides, and leads the robotic arm into position. Once the system automatically orients itself over the patient’s recipient area, implantation begins. The ARTAS iX can implant up to 500 grafts per hour.

ARTAS Robotic Hair Transplants at Bernstein Medical

Bernstein Medical was one of the first hair restoration practices in the world to use the ARTAS robot for FUE, a procedure pioneered by Dr. Bernstein and his colleague Dr. William Rassman. Bernstein Medical is a beta-test site for the ARTAS robotic systems. In 2013, Bernstein Medical was named an ARTAS Clinical Center of Excellence. Bernstein Medical is the first practice to offer the ARTAS iX.

Posted by
First Master Class in Robotic Hair RestorationFirst Master Class in Robotic Hair Restoration

May 11th, 2018 – Robert M. Bernstein MD, a pioneer in modern hair transplantation, led five robotic hair restoration physicians in an intensive master class focusing on ARTAS robotic techniques, surgical planning and aesthetics. The day included a live ARTAS Robotic FUE procedure, a series of twelve presentations and a Q & A period. The ARTAS Hair Transplant System, developed by Restoration Robotics, is the only robotic system in the world designed to aid surgeons in hair restoration procedures.

Dr. Bernstein was chosen to teach the first ever Master Class on Robotic Hair Transplantation because of his innovative work in the field of hair restoration and his contributions in the development of the ARTAS Robotic System. Dr. Bernstein is a Clinical Professor of Dermatology at the College of Physicians and Surgeons of Columbia University and founder of Bernstein Medical – Center for Hair Restoration, a state-of-the-art hair transplant facility in NYC and a beta-test center for Restoration Robotics.

Topics covered by Dr. Bernstein in the Master Class included technical aspects of robotic surgery, challenges of donor and recipient planning, hairline design, and when best to use Follicular Unit Excision (FUE). In his live demonstration and hands-on training, Dr. Bernstein also covered the techniques of Follicular Unit Graft selection and Long Hair R-FUE.

Dr. Bernstein presenting at the ARTAS Master Class.Dr. Bernstein presenting at the ARTAS Master Class.

Dr. Bernstein published “Follicular Unit Transplantation” in 1995 which now serves as the groundwork for modern hair restoration. Follicular Unit Transplantation (FUT) is the technique where the donor hair is removed from the scalp in one long thin strip and dissected into individual follicular units. Dr. Bernstein pioneered Follicular Unit Excision (FUE) in 2002, with his colleague Dr. William Rassman. Follicular Unit Excision (FUE) is the process of using an instrument to make a small incision around the skin of a follicular unit to separate it from the existing tissue. In 2011, Dr. Bernstein worked with researchers from Restoration Robotics to improve the newly released ARTAS Robotic System. Bernstein Medical was one of the first facilities in the world to use the ARTAS Robot to perform FUE hair transplantation.

In the first-ever master class, Dr. Bernstein shared his deep knowledge of hair transplantation and his experience using the ARTAS Robot with fellow hair transplant surgeons who traveled across the country for this opportunity.

Posted by

Dr. Robert M. Bernstein were guest speakers in the ARTAS webcast series where they discussed “What’s New in Robotic FUE”. In this live webinar, conducted by Restoration Robotics, Dr. Bernstein spoke to over 100 fellow surgeons and their staff on advances in robotic hair transplantation and led a Q and A session about the ARTAS Robotic System following the presentation. The main topics of discussion were the four key areas of the Robotic FUE procedure that are improved by the ARTAS 9x; increased speed, accuracy, and functionality, and advances in the use of artificial intelligence.

To hear what Dr. Bernstein had to say, watch the archived video (registration required).

Increased Speed

The ARTAS 9x is 20% faster than the ARTAS 8x and has a dissection cycle of less than two seconds. This new upgrade also allows for graft dissection and extraction to be performed simultaneously, increasing the speed of the procedure. Prior versions of the ARTAS robot used a red LED light which was too harsh on the human eye. The ARTAS 9x has a white LED light that allows grafts to be removed from scalp at the same time that the robot proceeds with the excision of additional grafts. The newest version of the robot uses a yellow tensioner, rather than the previous white one, enabling the robotic optical system to identify the tensioner from a greater distance. This eliminates the two manual commands needed to put the arm into position and, thus, increases the speed of the procedure.

ARTAS 9x - White vs Red LED LightPrevious versions of the robot used a red LED light (left), ARTAS 9x uses a white light (right)

Increased Accuracy

The ARTAS 9x provides physicians the option of using smaller needles with the addition of a 0.8mm needle. The smaller needle reduces scarring and enables more precise graft extraction.

“Compared to other versions of the ARTAS Robot, there is a dramatically less need for the physician to make modifications to the ARTAS 9x system. It seemed like we were driving a stick shift car, where now much of it is automatic.”

– Dr. Bernstein

Increased Functionality

Physical improvements to the robot include a smaller robotic head, improved headrest, new harvesting halo, and a robotic arm extender. The new 9x has a smaller head that allows the robot to move around the patient to approach their scalp at a more acute angle. This allows the angle of site making to go down to 30 degrees and harvesting down to 35 degrees. The site making headrest of the 9x does not include the protruding edges found in the 8x. This gives clearance for the robot to have more site making options. The new harvesting halo also places less downward pressure on the patient’s head with tension being more lateral but just as effective in stabilizing the scalp for precise excision. The 9x has an extender that allows the arm to more easily reach around the sides of the patient’s head without having to reposition the patient.

Use of Artificial Intelligence

The use of artificial intelligence (AI) in the 9x Robot leads to greater consistency and speed. AI aspects found in the ARTAS 9x include automatic collision recovery, empty site warning, automatic scar detection and new ARTAS Hair Studio technology. The motion sensor is in the arm where it attaches to head and the screen shows the physician what is happening in real-time so the position of the robotic can be adjusted easily.

Dr. Bernstein said:

“The ARTAS 8x required 6 steps to accomplish this; the 9x has a one-touch system with one button that retracts the head back to the neutral position.”

ARTAS 9x - Improved Scar DetectionARTAS 9x detects and blocks harvesting from areas with scarring

The ARTAS has a new empty site warning capability that signals the physician to make adjustments when the harvesting is sub-optimal. The ARTAS 9x also has an automatic scar detection function that allows the robot to detect areas with low or no hair density so that these areas can be automatically blocked from further harvesting. This feature is particularly useful in cases where there is significant scarring from prior surgery. There have also been advances made to the ARTAS Hair Studio. In 9x, only one photo is needed to create a 3D image of the patient’s scalp as opposed to the prior iterations that required up to five.

It is important to keep in mind that these improvements work together to increase the overall speed, accuracy and efficiency of Robotic FUE procedures.

Bernstein Medical and the ARTAS Robot

In 2011, Bernstein Medical became one of the first practices in the world to use the computer-driven technology of the ARTAS Robotic System in FUE hair transplant procedures. They have played an important role in the development of the technology ever since. Bernstein Medical is a beta-testing site for new enhancements and features to the ARTAS robot and Dr. Bernstein is on the Medical Advisory Board to Restoration Robotics, the company that makes the ARTAS robot.

Posted by

Q: I thought that FUE extraction is performed in a way that it cannot be detected. Therefore, it is best to distribute the pattern evenly starting from the safe zone and fading out on the sides. The ARTAS results often show a smaller extraction area and harder edges (no transition from extraction to non-extraction area). Does this lead to a higher risk to detect the surgery? — H.K. ~ Chicago, I.L.

A: Feathering of the extraction zone in FUE is a technique where the distance between the extractions gradually increases as one reaches the border of the extracted zone. When this technique should be used depends upon the short- and long-term goals of the patient. If the patient’s main goal of the FUE procedure is to wear their hair very short, then the technique of feathering and rounding the edges to have a less distinct border is appropriate, as this will decrease the visibility of the harvested area.

However, if a person does not wear his hair very short (nor plans to) and maximizing the donor supply is paramount, then a more organized pattern, with less feathering, will give a greater long-term yield and a more even distribution. The reason is that the healing of FUE wounds distorts adjacent follicular units making subsequent extraction in the same regions more difficult and increases the risk of transection. For this reason, in subsequent procedures we generally prefer to harvest in new areas. If we need to harvest more hair from the same area, we rarely go back more than once.

When one feathers extensively in the donor area, this utilizes a larger surface area of the scalp with less graft yield, so it may become necessary to go back over the same area to obtain additional grafts, often multiple times. This risks increased transection and an uneven, mottled appearance to the donor area.

If a person wears his hair very short, then feathering is critical (even though it makes subsequent extraction more problematic). It is very easy to feather and round edges with the ARTAS robot, but we make the decision to do so based upon the specific needs and goals of the patient.

Posted by
Dr. Bernstein Presenting at ISHRS 2017Dr. Bernstein speaking at the ISHRS in Prague, Czech Republic

Dr. Bernstein gave a presentation on “What’s New in Robotic FUE” at the 25th Annual Conference of the International Society of Hair Restoration (ISHRS) on Friday, October 6, 2017, in Prague, Czech Republic. He discussed the exciting new capabilities of the most recent upgrade to the ARTAS Robotic System, ARTAS 9x. The upgrades increase the speed and accuracy of the procedure while utilizing artificial intelligence to fine-tune the movements of the robotic arm.

Increased Speed

ARTAS 9x is 20% faster than the prior version, with each dissection cycle lasting less than 2 seconds. The robot can now harvest up to 1,300 grafts per hour. ARTAS 9x makes robotic hair transplants faster by enabling graft dissection and extraction to be performed simultaneously. Prior versions of the robot’s optical system used a red LED light. However, this proved to be too harsh for the human eye. ARTAS 9x solves this issue by using a white LED light, allowing grafts to be extracted while the robot dissects grafts in the scalp. Also, ARTAS 9x uses a yellow tensioner, rather than a white one, eliminating the need for two manual commands and increasing the speed of the procedure.

Increased Accuracy

ARTAS 9x has increased the accuracy of the procedure by allowing the option of smaller needles (0.8mm in addition to 0.9mm and 1.0mm). The 0.8mm needle minimizes distortion of the skin during harvesting and this improves the accuracy of the graft extraction process.

Artificial Intelligence

The ARTAS 9x uses artificial intelligence to maximize consistency in Robotic FUE procedures. It uses real-time information on the positioning of the robot and the patient to direct the robotic arm to automatically retract — but not shut down — if it detects a potential positioning issue. This increases efficiency and decreases the length of the procedure.

Artificial intelligence is also used to determine if there are any empty recipient sites on the scalp during harvesting, meaning that a graft was missed. The robot alerts the physician to this information so he/she can then adjust the algorithm to increase the efficiency of the procedure.

The software system that runs ARTAS 9x can now detect scars or areas of the scalp with few or no hairs and skip over these areas during harvesting. This saves time by blocking harvesting in areas that might result in a harvested area appearing too thin.

Other Functionality Improvements

ISHRS 25th Annual Conference ProgramISHRS 25th Annual Conference Program

There are a number of other improvements to the robotic system incorporated into ARTAS 9x. These include a smaller robotic head, an improved site-making headrest, a new harvesting halo, a robotic arm extender, and more. These modifications increase the functionality of the ARTAS Robotic Hair Transplant System and aid the physician to deliver optimal outcomes for the patient.

ARTAS Robotic Hair Transplants at Bernstein Medical

Bernstein Medical was one of the first hair restoration practices in the world to use the ARTAS robot to perform FUE, a procedure pioneered by Dr. Bernstein and his colleague Dr. William Rassman. In 2013, Bernstein Medical was named an ARTAS Clinical Center of Excellence.

As a medical adviser to Restoration Robotics, Dr. Bernstein works to improve its hardware and software systems in collaboration with the robot’s engineers and developers. Bernstein Medical is a beta-test site for the ARTAS robot with numerous advances being developed and tested in our NYC hair transplant facility.

Posted by

Q: Is it true that manual FUE hair transplant procedures are better than robotic hair transplants because the physician can adjust and feel the follicle when extracting? — M.H. ~ Great Neck, N.Y.

A: The ARTAS robot is a physician controlled, computerized device that uses a three-dimensional optical system to isolate follicular units from the back of the scalp in a hair transplant. The robotic system assists the physician in the extraction of grafts with precision and speed. Although there is some advantage to having “human feel” for the tissue, this is far outweighed by the fact that repetitive procedures performed manually thousands of times lead to operator fatigue and result in increased transection and damage to grafts. With the ARTAS robotic system, the quality of the first and the last graft harvested will be the same.

Read about advantages of the ARTAS Robot over manual FUE procedures

Posted by

Dr. Robert M. Bernstein, a Clinical Professor of Dermatology at Columbia University and one of the leading pioneers in modern hair transplant surgery, is recognized for his leadership in the field of hair restoration with inclusion in his 18th consecutive edition of New York Magazine’s ‘Best Doctors of New York.’

Best Doctors 2017 - New York Magazine

New York, NY — Robert M. Bernstein, MD, MBA, FAAD, FISHRS, has been recognized by his peers with inclusion in his eighteenth consecutive edition of New York Magazine’s annual ‘Best Doctors in New York’ issue. Dr. Bernstein, a Clinical Professor of Dermatology at Columbia University and founder of Bernstein Medical – Center for Hair Restoration, helped re-invent hair transplant surgery by pioneering the Follicular Unit Transplantation (FUT) procedure and by becoming an early proponent of robotic hair transplant surgery (Robotic FUE). He is the only hair restoration surgeon named to the prestigious “Best Doctors” list for so many consecutive years.

Dr. Bernstein said:

“New York has some of the finest doctors in the world, so to be considered among the best by my peers is quite an honor. It is equally satisfying when a patient tells us that we helped change their life.”

The ‘Best Doctors of New York‘ issue is an annual edition of New York Magazine that contains a more select version of the Top Doctors: New York Metro Area list published each year by Castle Connolly Medical, Ltd. New York Magazine’s list of 1,341 doctors represents about the top 2% of doctors in the region. In each list, the area’s top physicians are organized by specialty. Dr. Bernstein is listed under dermatology with expertise in robotic hair transplantation, surgical hair restoration, and hair loss treatment. To be included, doctors in New York, New Jersey, and Connecticut are nominated by their peers then subjected to a physician-led review of their skill in diagnosis and treating patients, qualifications, and reputation. Castle Connolly Medical also publishes the America’s Top Doctors directory, which has included Dr. Bernstein in all sixteen annual editions.

Dr. Bernstein has earned top accolades from the hair restoration industry, including the International Society of Hair Restoration Surgery’s Platinum Follicle Award, for his medical contributions to the field. Renowned for developing FUT hair transplants and introducing follicular unit extraction (FUE) procedures, Dr. Bernstein became one of the first in the world to incorporate the ARTAS Robotic Hair Transplant System into his practice in 2011. He has continued innovating through his collaboration with Restoration Robotics, Inc.; the company that developed the image-guided, physician-assisted robot. Recently, he announced a major upgrade to the robot with the release of ARTAS 9x. This latest version of the robot provides improved accuracy, quicker donor healing, and a faster overall procedure.

Dr. Bernstein’s hair restoration facility, Bernstein Medical – Center for Hair Restoration, is dedicated to the treatment of hair loss in men and women using the most advanced treatments and technologies. The state-of-the-art facility is located in midtown Manhattan, New York City and treats patients who visit from 58 countries and all 50 states. The board-certified physicians and highly-trained clinical assistants at Bernstein Medical take pride in providing the highest level of treatment and care for all patients.

About Robert M. Bernstein, M.D.

Dr. Robert M. Bernstein is a Clinical Professor of Dermatology at Columbia University in New York and is the founder and lead surgeon at Bernstein Medical – Center for Hair Restoration. He was the first to describe Follicular Unit Transplantation and Follicular Unit Extraction in the medical literature, and his more than 70 medical publications have fundamentally transformed the field of hair restoration surgery. Dr. Bernstein has appeared as a hair restoration expert on many notable television programs and in many news and lifestyle publications over the years. Examples include The Oprah Winfrey Show, The Dr. Oz Show, The Today Show, Good Morning America, ABC News, CBS News, GQ Magazine, Men’s Health, Vogue, Interview Magazine, Columbia Business, The Columbia Journalist, The Wall Street Journal, and The New York Times. He is a co-author of Hair Loss & Replacement for Dummies. Dr. Bernstein graduated with honors from Tulane University, received the degree of Doctor of Medicine at the University of Medicine and Dentistry of NJ, and did his training in Dermatology at the Albert Einstein College of Medicine. Dr. Bernstein also holds an M.B.A. from Columbia University.

Posted by

Dr. Bernstein closed the 2017 ARTAS Users Meeting with a discussion of five advanced techniques in robotic hair transplant procedures that he developed at Bernstein Medical. His presentation covered the benefits of pre-making recipient sites, long-hair FUE, tensioner placement, feathering edges in harvesting, and robotic graft selection. The “Hair Restoration Pearls” presentation included case studies, photographs, and videos demonstrating the techniques to the audience of hair restoration physicians. The two-day affair; which was held in Coronado, California; was a huge success, with over 260 attendees from around the world representing 204 robotic hair restoration practices.

Pre-Making Recipient Sites
There are several advantages of pre-making recipient sites in Robotic FUE procedures. One of the most important is that grafts are out of the body for a shorter period, which increases graft survival. During placement, there is less bleeding and greater graft stickiness, which result in increased visibility for the physician, less graft popping, and up to a 30% decrease in placing time. By pre-making sites, the physician can determine the exact number of grafts needed in the hair transplant. Also, the healing process can begin in the recipient area in advance of placing. This creates a fertile bed of oxygenated tissue with factors that promote healing and the subsequent growth of the follicular unit grafts.

Long-Hair Robotic FUE

In Long-Hair Robotic FUE, the patient has their hair temporarily lifted with tape during the hair transplant surgery. The physician then harvests from the donor area in a linear configuration so that, after the procedure, the long hair is let down covering the harvested area. The long-hair technique can be applied using one harvesting row (which yields up to 1,600 grafts), a double-row (2,000 grafts), or two separate rows (2,400). Long-Hair Robotic FUE, using the ARTAS Robotic Hair Transplant System, allows the donor area to be camouflaged immediately after surgery and does not limit a patient’s ability return to work. It also makes robotic hair transplants more practical for women, who usually prefer not to shave their donor area.

Tensioner Placement

Dr. Bernstein discussed a new two-handed technique for applying the robotic tensioner to the patient’s scalp. The tensioner applies traction to the scalp, stabilizes the skin, limits bleeding, and provides a system of fiducials that the ARTAS robot “reads” for proper orientation. Dr. Bernstein showed a video in which he demonstrates the technique and discusses the importance of applying the silicon straps as vertically as possible to ensure the greatest tension and stability. The two-hand technique allows for reduced stress on the physician’s hands, better control, and more accurate placement of the tensioner. It also facilitates easier edge engagement to create tension on the skin in preparation for harvesting.

Feathering Edges
Feathering is a common technique to avoiding a squared-off, geometric look after the FUE procedure. It allows the patient to maintain a natural look while wearing their hair short after the procedure. Dr. Bernstein presented two different ways to feather using existing capabilities of the ARTAS system. Dr. Bernstein showed how the physician can both round the edges of the harvest area and decrease the density on the outer edges, with simple, reproducible techniques. Most importantly, he discussed the situations in which feathering is important and the ones in which it should not be used.

Robotic Follicular Unit Graft Selection

Robotic graft selection is an advance over the harvesting technique used in earlier iterations of the ARTAS robot. The robot previously harvested grafts at random. By creating a software algorithm designed to skip over one-hair units and select only the larger follicular units, the harvesting process improved in efficiency. According to Dr. Bernstein’s study, the clinical benefit is 11.4% more hairs per graft and 17% more hairs per harvest attempt using this technique. Larger follicular unit grafts can be dissected into one-hair units for use in the frontal hairline and other cosmetically important areas in order to create the most natural aesthetic outcome in the hair transplant while minimizing the number of recipient wounds.

Posted by

Q: As a medical advisor and an end-user of the ARTAS Robotic System, do you see any impact of your involvement with Restoration Robotics? — J.V. ~ Miami, F.L.

A: Restoration Robotics has been very responsive to the needs of its physicians and to their patients. Because I work closely with Restoration Roboticsin the development of new improvement and advances they are often introduced first in our practice.

Posted by
Onalytica - Robotics Top 100 Influencers

Onalytica, a company that provides Influencer Relationship Management software and services, has named Dr. Bernstein one of the top influencers (#39 out of 100) on the topic of robotics due to his pioneering work in robotic hair transplant surgery with the ARTAS Robotic System.

Onalytica surveyed more than 550,000 tweets mentioning “robotics” or “robotic” over a span of 90 days (September – November 2016), including over 96,000 engaged twitter users, then used proprietary software to rank the most influential individuals and brands in the Twittersphere. The listing takes into account the level of engagement of each user’s tweets, the relevance to the topic, the influencer’s number of followers, and how frequently the influencer is listed in others’ Twitter lists. Dr. Bernstein is the only surgeon, hair transplant or otherwise, listed in the Top 40 of individual influencers.

Dr. Ordon and Dr. Bernstein discussing the latest advances in the ARTAS® Robotic Hair Transplant SystemDr. Bernstein and Dr. Ordon of The Doctors discussing advances in Robotic FUE

Robotics is a hot topic in the tech sector and according to one report, the service robotics market is expected to surpass $18 billion by the year 2020. Robotics has an increasing number of uses in healthcare, and thanks to Dr. Bernstein and Restoration Robotics the ARTAS system will continue to be on the cutting edge in surgical applications of robotics in the treatment of hair loss for years to come.

Make sure to follow @bernsteinhair for the latest on robotic hair transplants.

Posted by

Q: I have read that the ARTAS System works best on straight black hair. Is this an option for gray hair? How about wavy or curly hair? – P.W., Fort Lee, NJ

A: The ARTAS robotic system can be used in patients with any hair color although in order for the robot to visualize white hair (or very light blond hair) the hair must be dyed. Curly hair is also not a problem as the donor hair in a robotic procedure is shaved to approximately 1 mm in length so a wave or curl is eliminated. In patients of African descent, where the hair below the surface of the skin may be curved, a slightly larger punch can be used. we have patients dye their hair the evening before or the day of the procedure. For convenience, only the hair in the donor area (back and sides) where the robot will be doing the harvesting needs to be dyed.

In patients who prefer not to shave or dye the entire back and sides of the scalp, we can perform the ARTAS robotic FUE using the long-hair technique. With this technique, you will grow your hair on the back and sides of the scalp a bit longer so it can cover the harvested area. On the day of the procedure, we will lift up the hair, clip a long thin band of donor hair and then extract follicular units from this limited region of the scalp. After the procedure, you can simply comb down your hair to cover the donor zone. The area that has been harvested (and possibly dyed depending on your hair color) will not be visible.

Posted by
Dr. Bernstein Speaks at ISHRS 2016Dr. Bernstein Speaks at ISHRS 2016

Dr. Robert M. Bernstein, Clinical Professor of Dermatology at Columbia University and founder of Bernstein Medical – Center for Hair Restoration, presented the results of his study on robotic hair transplantation at the annual ISHRS World Congress held in Las Vegas, Nevada on Friday, September 30, 2016. Dr. Bernstein presented an advance in the technology of the ARTAS® Robotic Hair Transplant System, called automated or robotic graft selection, which minimizes scarring and improves outcomes of robotic hair transplant procedures.

New York, NY — Dr. Robert M. Bernstein, Clinical Professor of Dermatology at Columbia University and founder of Bernstein Medical – Center for Hair Restoration, presented results of his study, “Robotic Follicular Unit Graft Selection,” at the 2016 ISHRS World Congress held in Las Vegas, Nevada. Graft selection is a key advance in the ARTAS Robotic Hair Transplant System, a hardware and software suite that automates aspects of the Follicular Unit Extraction (FUE) hair transplant procedure. The enhancement makes Robotic FUE more efficient and improves patient outcomes.

Dr. Bernstein presented the results of a peer-reviewed, bilateral controlled, randomized study which was published in the June 2016 issue of the journal Dermatologic Surgery. The study found that robotic graft selection can yield 17% more hairs per harvest attempt and 11.4% more hairs per graft than the prior system, which selected grafts at random. By automating the graft selection process, the ARTAS robot creates fewer wounds, which leads to fewer scars in the donor area – the area in the back and sides of the scalp from which follicular units are harvested – and an improved aesthetic outcome.

Graft selection is a process in FUE hair transplants to be used as each follicular unit — a tiny, naturally occurring bundle of one to four hair follicles — is chosen for extraction. Physicians who perform FUE procedures using manual, hand-held devices visually select each of the up to two thousand grafts that are extracted in an FUE hair transplant. Complicating the process, if too many large units are extracted, there may not be enough small units for transplantation to aesthetically sensitive areas like the frontal hairline. Extracting too many small units may result in unnecessary wounding in the donor area. The surgeon has to balance extracting the greatest number of follicles with creating the fewest possible wounds.

Early versions of the ARTAS robot, which automates several key steps in an FUE procedure, selected follicular units randomly. Dr. Bernstein, who has been collaborating with Restoration Robotics Inc. since its clinical release in 2011, set about to develop this robotic graft selection function. The result of this collaboration is a sophisticated automated graft selection system that makes the ARTAS robot more efficient and improves aesthetic outcomes of Robotic FUE hair transplant procedures. Dr. Bernstein introduced preliminary results of the graft selection study at the annual ARTAS User Group Meeting in February 2015.

Dr. Bernstein presented final results of the study at the 24th ISHRS World Congress held in Las Vegas, Nevada on Friday, September 30, 2016. The International Society of Hair Restoration Surgeons (ISHRS) is the pre-eminent association of hair transplant surgeons in the world, with more than 1,200 members from 70 countries. Dr. Bernstein participates in this annual event , often to present results of a major study published that year. This year he also lead a discussion session titled “Robotic FUE – Advances and Evolution”.

About Robert M. Bernstein, MD, MBA, FAAD, FISHRS

Dr. Robert M. Bernstein is a Clinical Professor of Dermatology at Columbia University in New York; renowned hair transplant pioneer; and founder of Bernstein Medical – Center for Hair Restoration. His more than 70 medical publications have fundamentally transformed the field of hair restoration and he has received the highest honor in the field given by the International Society of Hair Restoration Surgery (ISHRS). Dr. Bernstein has been featured on: The Oprah Winfrey Show, The Doctors on CBS, Good Morning America, The Today Show, The Dr. Oz Show, CBS News, ABC News, Fox News, Univision, and many other television programs. He has been interviewed by GQ Magazine, Men’s Health, Vogue, Columbia Business, The Columbia Journalist, The Wall Street Journal, and The New York Times.

Posted by

Dr. Robert M. Bernstein, pioneer of modern hair transplant procedures and a Clinical Professor of Dermatology at Columbia University in New York, was selected for the 17th consecutive time to be included in New York Magazine’s annual ‘Best Doctors’ issue.

New York Magazine Best Doctors 2016New York, NY — Robert M. Bernstein, MD, MBA, FAAD, FISHRS, a Clinical Professor of Dermatology at Columbia University in New York and distinguished pioneer of modern hair transplant surgery, was included for the seventeenth consecutive time in the ‘Best Doctors’ edition of New York Magazine. Dr. Bernstein was selected by his peers as one of New York’s top doctors on account of his prominent work in developing Follicular Unit Transplantation (FUT), Follicular Unit Extraction (FUE), and Robotic Hair Transplantation (Robotic FUE).

Dr. Bernstein said: “It is exciting to be part of the continuing progress made in the treatment of hair loss as technological advances in both robotics and traditional surgery converge to improve the care of our patients.”

Bernstein Medical – Center for Hair Restoration, founded by Dr. Bernstein in 2005, is a center of innovation for the hair restoration industry. So far in 2016, Dr. Bernstein has patented a modified FUE procedure and published research on improvements to the ARTAS® Robotic Hair Transplant System. Each of these advances is designed to enhance surgical outcomes for hair transplant patients. Bernstein Medical is a beta-test site for Restoration Robotics, Inc.; the company that produces the ARTAS robot and Dr. Bernstein is a medical advisor to the company.

The ‘Best Doctors’ issue is a special annual edition of New York Magazine that contains a peer-nominated list of 1,300 of New York City’s top physicians. The list of doctors is cultivated by Castle Connolly, Ltd., through a survey of physicians in the New York Tri-State area, which includes New York, New Jersey, and Connecticut. Doctors who are nominated must pass a rigorous physician-led review of their qualifications, skill in diagnosis and treating patients, and reputation. Castle Connolly also publishes America’s Top Doctors, which has included Dr. Bernstein in all fifteen editions, and Top Doctors: New York Metro Area, which has included Dr. Bernstein in fifteen consecutive editions.

Posted by

Q: I have a diagonal scar in the middle of my donor area that I got during a childhood accident and I am concerned that it will limit my options for hair restoration. Will this type of scar prevent me from having either FUT or FUE? Do you recommend one or the other? — R.F., Upper West Side, NY

A: Traumatic scars in the donor area do not preclude us from performing a hair transplant. With an FUT/strip procedure, we can remove all or part of the scar when we excise the donor strip. In Robotic FUE, the ARTAS Robot can be programmed to avoid a scar during harvesting. In either procedure, we can improve the appearance of the scar by implanting follicular unit grafts directly into the scar tissue. The hairs will grow permanently in the scar, just like ones we implant in the recipient area, and the scar will become harder to detect.

It is important to note that transplanted hair will not grow in a thickened scar. If your scar is thickened, the doctor can thin it out (soften it) with injections of cortisone. They are usually repeated at 4-6 week intervals in advance of the procedure. The number of injection sessions required depends upon the thickness of the scar and your individual response to the medication.

The presence of a traumatic scar should generally not determine which type of transplant you have. That should be decided in consultation with your physician based on factors such as how much volume you need, how you intend to style your hair, how short you would like to keep it, how soon you need to return to strenuous physical activity, and other general considerations for a hair transplant.

We recently posted photos from a patient who had a robotic hair transplant with a scar in his donor area. The photos include images of his donor area (with scar) before his procedure, immediately after robotic graft harvesting and 11 days post-op. View this patient’s before after photos.

Posted by

Dr. Robert M. Bernstein, a Clinical Professor of Dermatology at Columbia University and founder of Bernstein Medical – Center for Hair Restoration, presented results of a study on a major new advance in follicular unit harvesting using the ARTAS® Robotic Hair Transplant System at the 2016 ARTAS User Group Meeting in Dana Point, CA on February 20, 2016. Dr. Bernstein described the clinical benefit of the new advanced graft harvesting capability, a technique with wide implications for the increasingly popular robotic hair restoration procedure.

Dr. Bernstein Presenting at the 2016 ARTAS User Group MeetingDr. Bernstein Presenting at the 2016 ARTAS User Group Meeting

New York, NY — Dr. Robert M. Bernstein, a pioneer of robot-assisted hair transplantation, presented results of a study on a major new advance in robotic follicular unit harvesting, a key step in the surgical procedure, at the 2016 ARTAS User Group Meeting in Dana Point, CA. He reported that the new robotic technique resulted in a clinical benefit of up to 15% more hairs per harvest attempt and 11.4% more hairs per graft than with the current iteration of the ARTAS® Robotic Hair Transplant System. The improvement in graft harvesting should result in better aesthetic outcomes for patients, and this will have wide implications around the world as robotic hair transplant procedures are booming in popularity. Dr. Bernstein presented the findings to a “who’s who” group in the new field of robotic hair restoration surgery at their annual meeting held on February 20th, 2016.

When asked about the significance of advanced robotic harvesting, Dr. Bernstein said:

“Through the hard work and ingenuity that went into developing the robot’s new graft selection capability, we have moved this new ARTAS application from the ‘proof of concept’ phase into an enabling technology that improves patient care.”

In robotic follicular unit extraction (Robotic FUE) hair transplants, the surgeon seeks to harvest as much hair as possible through the fewest number of donor sites. By maximizing the hair-to-donor wound ratio, they can maximize the cosmetic benefit of the procedure. The ARTAS robot’s new advanced graft selection capability uses its updated computer algorithm to determine which of the hundreds of follicular units — naturally-occurring groupings of one to four hair follicles — to harvest. By programming the computer to select only the larger follicular units (i.e., ones containing two or more hairs), the robot can automatically maximize the hair-to-wound ratio. The result is more hairs harvested with fewer post-transplant scars and an improved cosmetic outcome for the patient. Previously, the robot randomly selected follicular units to harvest.

Advanced Robotic Graft Selection

To demonstrate the benefit of advanced automated graft selection, Dr. Bernstein presented findings of a randomized, bilaterally-controlled study performed on robotic FUE patients at Bernstein Medical – Center for Hair Restoration. The robot was programmed to select follicular units of two or more hairs in a first pass, and then all follicular units in a second pass. The control for the experiment was an area, on the contra-lateral side, that was harvested with the graft selection capability disabled. The first pass yielded 15% more hairs per harvest attempt and 11.4% more hairs per graft compared to the control. The second pass yielded 12.3% more hairs per harvest attempt and 6.4% more hairs per graft. These findings suggest that there is a significant clinical benefit in using the advanced graft selection capability when compared to random selection of follicular units.

Robotic Hair Transplants at Bernstein Medical – Center for Hair Restoration

Dr. Bernstein performing robotic hair transplant at Bernstein Medical
Dr. Bernstein performing robotic hair transplant at Bernstein Medical

Bernstein Medical – Center for Hair Restoration was among the first hair restoration facilities in the world to use the ARTAS system to perform Follicular Unit Extraction (FUE), a procedure pioneered by Dr. Bernstein. Bernstein Medical is a beta-test site for this innovative technology. Bernstein Medical physicians have introduced many new applications to the robotic system, including: robotic recipient site creation, advanced graft harvesting, custom punch sizes, and a “long-hair” harvesting technique. Every FUE procedure at Bernstein Medical uses the ARTAS Robot. Dr. Bernstein is a medical advisor to Restoration Robotics, Inc., the company that developed and manufactures the ARTAS system.

About Robert M. Bernstein, MD, MBA, FAAD, FISHRS

Dr. Robert M. Bernstein is a Clinical Professor of Dermatology at Columbia University in New York, renowned pioneer of Follicular Unit Transplantation (FUT) and Robotic Follicular Unit Extraction (Robotic FUE) hair transplant procedures, and founder and lead surgeon at Bernstein Medical – Center for Hair Restoration. His more than 70 medical publications have fundamentally transformed the field of surgical hair restoration and he has received the Platinum Follicle Award, the highest honor in the field given by the International Society of Hair Restoration Surgery (ISHRS). Dr. Bernstein has been featured on: The Oprah Winfrey Show, The Dr. Oz Show, Good Morning America, The Today Show, The Doctors on CBS, CBS News, ABC News, Fox News, Univision, and many other television shows. He has been interviewed by GQ Magazine, Men’s Health, Vogue, Interview Magazine, NY Post, National Public Radio, Columbia Business, The Columbia Journalist, The Wall Street Journal, and The New York Times.

Posted by
NYCityWoman.com

Dr. Bernstein was interviewed for an article in NYCityWoman.com that ran the gamut of available treatments for hair loss in women. Read below for some select quotes on a wide range of topics related to hair loss in women and treatments for female patients with androgenetic alopecia (common genetic hair loss).

On the fading stigma of hair loss in women:

“Women today are more comfortable talking about their hair loss.”

On indicators of hormone-driven female hair loss:

“It is typical to have a positive family history of hair loss and the presence of miniaturization (short, fine hairs) in the thinning areas.”

On minoxidil for regrowth of thinning hair:

Rogaine (minoxidil) can increase the quality (length and diameter) of hair that is just starting to thin.”

On the different strengths of Rogaine (minoxidil):

I generally recommend the 5 percent for women and men. Although it’s sold in separate packages for men and women, the basic ingredients are essentially the same.”

On Rogaine Foam:

“It is an elegant mixture, made for compliance,” says Dr. Bernstein. “It is an aerosolized foam, so it is less irritating than liquid Rogaine, but can be more difficult to get directly on the scalp.”

On LaserComb vs. cap-based Low Level Laser Therapy (LLLT) devices:

“The cap is both easier to use and more effective for very thin hair, due to the greater number of lasers. But for higher-density hair, a laser comb or the LaserBand82 may be more effective, as it’s probably better at getting the laser therapy beam to the scalp.”

On Follicular Unit Transplant (FUT) surgery:

FUT hair transplants allow many women to have a completely natural hair restoration, producing a dramatic change in their appearance.”

On Robotic FUE hair transplants:

Robotic FUE allows for unparalleled precision, without any line scars in the donor area and no post-operative limitations on physical activity.”

See before and after photos of some of our female hair transplant patients
Read about the causes, classification, diagnosis and treatment of hair loss in women

Posted by

Q: How are specifications for making recipient sites inputted into the ARTAS® robot? — A.F., Queens, NY

A: At the outset of the procedure, the physician sits at a computer terminal that is connected to the ARTAS Robot and enters the specifications directly into the robot’s software. Variables programmed in this manner include the number of recipient sites, density of sites, angle that the hair will extrude from the skin, depth of recipient sites, and the minimum distance away from existing hair follicles that a site can be created.

Posted by

Q: How does the ARTAS System avoid damaging hair follicles in the balding area during recipient site creation? — R.K., Brooklyn, NY

A: The ARTAS robot‘s optical guidance system enables it to accurately create recipient sites in areas of thinning hair without damaging existing hair follicles. During the recipient site creation process, the robot uses its advanced image-guided optical system to scan the surface of the skin, locate existing hair follicles in the recipient area, and then create recipient sites at a specified distance from these existing hairs.

The ARTAS robot carries out this process rapidly, accurately, and consistently according to the physician’s programmed specifications. Thanks to the microscopic precision of the image-guided technology, the robotic hair transplant system can avoid injury to follicles that can result when Follicular Unit Extraction (FUE) is performed using manual techniques.

Posted by
Dr. Bernstein Discusses the Latest in Robotic Hair Transplant Surgery on The Bald Truth

Dr. Bernstein appeared on The Bald Truth, where he was interviewed by the show’s host, Spencer Kobren, about the ARTAS® Robotic Hair Transplant system for FUE and the latest updates to the robot. He also discussed increased demand for FUE procedures, and hair transplants in general, around the world.

Bernstein Medical was among the first facilities in the world to use the ARTAS Robotic System to perform Follicular Unit Extraction (FUE) hair transplants, a procedure pioneered by Dr. Bernstein. Bernstein Medical is a beta-test site for this innovative technology. Physicians at Bernstein Medical have introduced new applications for the robot, including: custom punch sizes, robotic recipient site creation, automated follicular unit graft selection, and a “long-hair Robotic FUE” technique that allows the patient to keep their hair longer in the donor area. Every FUE hair transplant at Bernstein Medical uses the ARTAS Robotic System. Dr. Bernstein is a medical advisor to Restoration Robotics, the company that manufactures the ARTAS hair transplant system.

Watch video of the interview and read a transcript
Read more about Robotic FUE
Read our Robotic Hair Transplant FAQ

Posted by
New York Post

Dr. Bernstein was quoted in a New York Post article on the growing popularity of surgical hair restoration. In the article, Dr. Bernstein explained how celebrity hair transplants have become a driving factor behind the fading of the decades-long stigma of hair transplants.

“Soccer players, football players — they’re admitting they’ve had the surgery. Patients bring in pictures of [George] Clooney, Brad Pitt. The stigma of the old plugs is fading,” [said Dr. Bernstein.]

While celebs aren’t writing signed confessions, there’s plenty of speculation about which high-profile men may have gotten procedures — such as LeBron James, Kevin Costner, John Travolta and Jeremy Piven.

Advancement in hair transplant technology may also be lending a hand. Follicular Unit Transplant (FUT) surgery and newer techniques, such as Robotic FUE, have all but eliminated the old corn-row style “hair plugs” that were commonplace twenty years ago.

The article discusses how the hair restoration industry saw a 27% increase in hair transplant procedures worldwide since 2012. The newest data released by the International Society of Hair Restoration Surgery (ISHRS) values the global surgical hair restoration market at nearly $2.5 billion.

Posted by

The following are excerpts from a recent interview with Dr. Bernstein. The oral text was modified for readability.

Part 1

Hair Loss in the Younger Person

More Hair Loss Q&A

Interviewer: I brought a fair number of questions related to aspects of androgenetic alopecia and hair transplantation, but I will also ask you some questions regarding two other types of hair loss, like alopecia areata and cicatricial alopecia. Most of our listeners are fairly educated about the different hair restoration options available to them, so I’ll tailor my questions primarily for this type of audience.

The first question that I want to direct here is the dilemma that many young people face when they’re losing their hair and are considering getting a hair transplant. They typically don’t know the degree to which their hair loss is going to progress. When you’re in your 20s and 30s, you want to have a decently low-running hairline and you want to have a crown that looks full. But given that you don’t know how far your hair loss is going to go, how would you address this scenario for people in that age range?

Dr. Bernstein: That is the main problem with treating younger people. We don’t really know how they’re going to progress. It is so important to wait, usually until the person is 23 to 25 before you can really get a sense of how much hair loss they are going to lose. And even at that age it’s sometimes very difficult to tell. That’s even after considering things such as family history.

A problem with treating a younger person with surgical hair restoration is that they often want things that are unrealistic. A person in their 20s is what we call “backward-looking.” They’re looking to when they were a teenager and they want their flat hairline back and all their old density. But hair transplants are forward-looking. We need to consider what they’re going to be like in ten or twenty years – not how they looked in the past.

A density and a transplanted hairline that would be appropriate for someone older, is obviously not going to be satisfactory for someone that is younger, so it’s really best to wait on hair transplant surgery. Fortunately, there are some other good hair restoration treatments, such as medication, and that’s what the focus should be on in a younger person.

Interviewer: A lot of people are in that situation and are considering hair transplants. I guess the hard thing to do is convey to them your point that they really should be forward-looking instead of backwards-looking and maybe they will have to settle for a somewhat higher one than they originally thought so that it will be good on the long-term.

The Donor Area in a Hair Transplant

With regards to the donor area, it’s sort of been spread as gospel that hair from this area is completely immune to thinning and hair loss. Is this really the case? For instance, there are people in their 50s and beyond who still have relatively thick hair in that area, the donor area still appears thinner than it was when they were younger. I look at my own father, for instance, as an example. His donor area is obviously still relatively thick, but he has less hair in that area. So when you’re young, and you transplant hair from that area, can you expect some of those transplanted hairs to fall out?

Dr. Bernstein: The donor area in hair transplantation, for most people is, in fact, permanent in that the hair that is transplanted will remain. What happens, though, is that in the course of one’s lifetime, that hair will change in quality. So the hair actually thins out over time. It’s not miniaturization in the sense that hair that’s being lost to genetic hair loss is miniaturized, but there’s a change that we call “senile alopecia” where the hair changes in diameter. It is more of a uniform change than we see in typical androgenetic change and so over time the donor area and, therefore, the transplanted area as well, will appear thinner.

That said, it’s still important to identify the fact that some patients will actually lose a significant amount of hair in the donor area. We call those people DUPA or diffuse unpatterned hair loss. What that means is that the androgenetic related process that is occurring on the front and top of the scalp is also affecting the back and the sides. It is really important to identify those patients because those with DUPA are not candidates for hair transplantation, since the hair transplants are only as good as the hair in the donor area. If the hair in the back and sides thins or falls out over time, so will the transplanted hair.

DUPA or diffuse unpatterned hair loss can be identified by Densitometry. Essentially what that is, is clipping a little bit of hair from the donor area and seeing if there are changes in hair shaft diameter at a young age. If the miniaturization (decrease in hair diameter) exceeds about thirty percent, it’s very suggestive of this type of hair loss. It’s also much easier to pick up this condition when someone is a little older, which is another argument for not performing a hair transplant on someone who is too young.

Interviewer: So how long does it take to determine if someone will have extensive hair loss and possibly not be a good candidate for a hair transplant. I mean, when you first take the initial sample, how long do you have to wait before you check again to see if it actually happens?

Dr. Bernstein: Generally, the first thing that a young person will notice is decreased hair volume. They will complain “I feel like I have less hair” or “when I go to the barber, he says I’m thinning,” or “when I run my fingers or comb through my hair, it seems like its thinner”. At this point, it is usually easily confirmable on densitometry. We can find increased miniaturization in the donor area. And this can sometimes occur as early as 14 or 15 years old. So it really can occur very early and, unfortunately, those patients are usually going to become very bald – usually at a young age.

The good thing is that if you have very thin hair all over, it often doesn’t look as bad as having dense hair on the back and sides with a bald top. So even though people with diffuse unpatterned hair loss can lose lots of hair, they actually don’t do so badly since their hair is uniformly thin. And they sometimes respond well to medications, such as Propecia. Although this is not a permanent cure, it may at least get them through the critical years of their teens and early 20s.

Posted by



Browse Hair Restoration Answers by topic:








212-826-2400
Scroll to Top